刘新旺:男,1968年生。东南大学管理科学与工程系,博士,教授,博士生导师。曾入选江苏省“333高层次人才培养工程”首批中青年科学技术带头人, 教育部“新世纪优秀人才支持计划”。曾获中国运筹学会“运筹新人奖”和“钟家庆”运筹学奖。IEEE和ACM会员;中国运筹学会不确定系统分会常务理事;美国南加州大学访问教授。曾在国际核心期刊、国际会议和国内核心期刊发表中英文论文100多篇。这些期刊包括管理科学学报、系统工程学报、系统工程理论与实践、管理工程学报, IEEE Transactions on Fuzzy Systems, IEEE Transactions on Systems, Man and Cybernetics-Part B, Fuzzy Sets and Systems, International Journal of Approximate Reasoning, International Journal Intelligent Systems, International Journal of General Systems, Computer and Mathematic with Applications, International Journal of Uncertainty Fuzziness and Knowledge-Based Systems , InformationSciences等。主要研究方向:(1)信息集成与模糊系统;(2)模糊决策与行为决策;(3)推荐系统与行为金融。
办公地点:九龙湖经管楼B-408
电子邮箱:xwliu@seu.edu.cn
科研与教学项目:
[1] 国家自然科学基金“二型模糊系统理论及其在知识个性化推荐中的应用 (71371049)”,2014.1-2017.12,主持
[2] 国家自然科学基金“连续模糊决策的词计算理论及其信息集成方法研究(71171048)”,2012.1-2015.12,主持
[3] 国家自然科学基金“基于序加权平均的参数化决策方法及其在网络决策中的应用(70771025)”,2008.1-2010.12,主持
[4] 国家自然科学基金“面向商务智能的第三方物流软决策方法研究(70301010)”,2004.1-2006.12,主持
[5] 国家重点实验室开放课题“基于模糊逻辑的轨道交通安全域动态估计与评价(RCS2011K002)”,2012.1-2013.12,主持
[6] 教育部博士点基金“二型模糊信息集成算子研究及其群决策应用(20120092110038)”,2013.1-2015.12,主持
[7] 教育部网络时代的科技论文快速共享研究(2013)资助项目“论文同行评审模式及评价标准研究——以中国科技论文在线为例”(20130092110063),2014.1-2014.12,主持
[8] 教育部新世纪优秀人才支持计划“基于序加权平均算子的信息集成与决策方法研究“,2006.1-2010.12,主持
[9] 教育部聘请外籍教师重点项目“商务智能决策:偏好表示与信息集成方法研究”,2006.5-2007.10,主持
[10] 十一五”国家科技支撑计划重大项目现代服务业共性技术支撑体系与应用示范工程—现代物流综合管理关键技术与平台, 2006.12-2008.12,参与
[11] 企业生教育部博士点基金“命体的理性研究”, 2004.1-2006.12,参与
[12] 知识型企业生命体模型及应用研究/国家自然科学基金/2001.1-2003.12,参与
[13] 国家自然科学基金” 供需链管理下企业财务信息管理系统过程重组研究“, 2000.1-2002.12,参与
专著及论文:
[1] Liu X.W. and Wang Y.M., An analytical solution method for the generalized fuzzy weighted average problem. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2013. 21(3): 455-480.
[2] Liu X.W. and Yu S., On the Stress Function-Based OWA Determination Method With Optimization Criteria. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2012. 42(1): 246-257.
[3] Liu X.W., Pan Y.W., Xu Y.J., and Yu S., Least square completion and inconsistency repair methods for additively consistent fuzzy preference relations. Fuzzy Sets and Systems, 2012. 198: 1-19.
[4] Liu X.W., Mendel J.M., and Wu D.R., Study on enhanced Karnik-Mendel algorithms: Initialization explanations and computation improvements. Information Sciences, 2012. 184(1): 75-91.
[5] Liu X.W., Mendel J.M., and Wu D.R., Analytical solution methods for the fuzzy weighted average. Information Sciences, 2012. 187: 151-170.
[6] Liu X.W., Models to determine parameterized ordered weighted averaging operators using optimization criteria. Information Sciences, 2012. 190: 27-55.
[7] Liu X., Continuous Karnik-Mendel Algorithms and Their Generalizations, in Advances in Type-2 Fuzzy Sets: Theory and Applications, A. Sadeghian, J.M. Mendel, and H. Tahayori, Editors. 2012, Springer.
[8] Liu X., Models to determine parameterized ordered weighted averaging operators using optimization criteria. Information Sciences, 2012. 190(1): 27-55.
[9] Liu X.W. and Mendel J.M., Connect Karnik-Mendel Algorithms to Root-Finding for Computing the Centroid of an Interval Type-2 Fuzzy Set. IEEE Transactions on Fuzzy Systems, 2011. 19(4): 652-665.
[10] Liu X., A Review of the OWA Determination Methods: Classification and Some Extensions, in Recent Developments in the OrderedWeighted Averaging Operators: Theory and Practice, R.R. Yager, J. Kacprzyk, and G. Beliakov, Editors. 2011, Springer-Verlag: Berlin Heidelberg. p. 49-90.
[11] Liu X.W., The orness measures for two compound quasi-arithmetic mean aggregation operators. International Journal of Approximate Reasoning, 2010. 51(3): 305-334.
[12] Liu X.W., The relationships between two variability and orness optimization problems for owa operator with RIM quantifier extensions. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2010. 18(5): 515-538.
[13] Liu X., The orness measures for two compound quasi-arithmetic mean aggregation operators. International Journal of Approximate Reasoning, 2010. 51(3): 305-334.
[14] Liu X., The relationships between two variability and orness optimization problems for OWA operator with RIM quantifier extensions. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2010. 18(5): 515-538.
[15] Liu X.W. and Lou H.W., On the equivalence of some approaches to the OWA operator and RIM quantifier determination. Fuzzy Sets and Systems, 2008. 159(13): 1673-1688.
[16] Liu X.W. and Han S.L., Orness and parameterized RIM quantifier aggregation with OWA operators: A summary. International Journal of Approximate Reasoning, 2008. 48(1): 77-97.
[17] Liu X.W., A general model of parameterized OWA aggregation with given orness level. International Journal of Approximate Reasoning, 2008. 48(2): 598-627.
[18] Xinwang Liu H.L., Parameterized approximation of fuzzy number with minimum variance weighting functions. Mathematical and Computer Modelling, 2007. 46(11-12): 1398–1409.
[19] Liu X.W., The solution equivalence of minimax disparity and minimum variance problems for OWA operators. International Journal of Approximate Reasoning, 2007. 45(1): 68-81.
[20] Liu X., Parameterized defuzzification with maximum entropy weighting function-Another view of the weighting function expectation method. Mathematical and Computer Modelling, 2007. 45(1-2): 177-188.
[21] Liu X., Parameterized additive neat OWA operators with different orness levels. International Journal of Intelligent Systems 2006. 21(10): 1045-1072.
[22] Liu X.W., Some properties of the weighted OWA operator. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2006. 36(1): 118-127.
[23] Liu X.W., On the maximum entropy parameterized interval approximation of fuzzy numbers. Fuzzy Sets and Systems, 2006. 157(7): 869-878.
[24] Liu X.W., An orness measure for quasi-arithmetic means. IEEE Transactions on Fuzzy Systems, 2006. 14(6): 837-848.
[25] Liu X., On the properties of equidifferent OWA operators. International Journal of Approximate Reasoning, 2006. 43(1): 90-107